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ASYMPTOTIC ANALYSIS OF THE PROCESS OF IGNITING A COMBUSTIBLE 
GAS MIXTURE BY THERMAL INHOMOGEN~ITY~ 

V. S. BEG, Iu. S. RIAZ~TSEV, and V. M. SHEVTSOVA 

An approximate solution is obtained for the problem of igniting a gaseous combusti- 
ble mixture in which a region of higher temperature is created at the initial inst- 
ant of time. The temperature in the heated region either sharply increases or de- 
creases with time depending on the properties of the active gaseous mixture and on 
the initial temperature distribution. An initial small temperature increase follow- 
ed by its decrease is also possible. In the first case ignition take place, while 
in the second the initial temperature inhomogeneity becomes blurred in time. Approxi- 
mate equations defining the initial stage of the process are derived, and critical 
values of characteristic parameters corresponding to ignition are established. 

The analysis is based on the use of the dimensionless ratio of the maximum temperature in 
the heated zone to the activation temperature, as the small parameter commonly used in the 
theory of combustion. We consider the case of plane geometry in which the heated region is 
one-dimensional and symmetric about the maximum initial temperature plane in which we locate 
the coordinate origin. The method developed here enables us to extend the obtained results to 
cases of cylindrical and spherical geometries. 

The use of asymptotic methods in the theory of ignition makes it often possible to reduce 
a complex nonlinear problem to the analysis of simpler approximate equations which in particw- 
lar cases can be solved analytically, and to indicate dimensionless parameters that define the 
basic particulars of the process /l--7/. An asymptotic analysis of the problem of igniting a 
reacting medium by a light flux is presented in /1,2/, and asymptotic solutions of the problem 
of igniting a reacting medium by a heated body at constant or varying temperature appear in 
/3-6/. In all of these problems the igniting source was assumed to act at the reacting med- 
ium boundary. 

1, statement of the pri&lem, on the basis of the usual assumptions of the theory 
of combustion /Sf the single-stage exothermic chemical reaction in gas can be defined by the 
following system of equations: 

where ?' is the temperature, y is the concentration of reaction products, Q = Q(T) is the dens- 
ity, h = J.(T) is the thermal conductivity, c is the specific heat, z is a space coordinate, 

1' is the time, Q is the th ermal yield of the reaction, k is the frequency factor, E is 
the activation energy, n is the reaction order, R is the gas constant, D --D(T) is the dif- 
fusion coefficient, m is the mass velocity of gas, T_ is the temperature at considerable dist- 
ance from the heated region, a' is the heat transfer coefficient, and To is the maxims temp- 
erature in the heated region at the initial instant of time. The possibility of heat removal 
from the combustion zero, which occurs when the gas is contained in a fairly thin plane layer 
between two heat conducting surfaces, is taken into account in Eqs. (1.1). When a'= 0 there 
is obviously no heat transfer. 

We assume that at the initial instant of time the temperature distribution in the gas is 
defined by formula 

T (2, 0) == (1'0 - T_)@ (2 / 1T) + T_ (1.2) 

fzd,(O)ldz==O, 0?@/&."<0, @(0)=1, cD(J,m)=O 

where lr is the characteristic scale of the initial temperature distribution variation. We 
pass from variables (t',z) to variables (t',$) using formulas 

?n - --a$ i tit', Q = a$ i 82, m (2, 0) = 0, 11, (2 = 0, t') = 0 

and assume that hp =: const, c = con&, DQ2 = cons& 
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We write the equations, boundary and initial conditions in dimensionless variables in 
the form 

ae 
-=~+s(1--)"r(8)exp(B(8-_))-aa6 (1.3) 
at 

X+, t=&, Ax=Z,~ 

where TT is the characteristic time of relaxation due to heat conduction, rCh is the charact- 
eristic time of the chemical reaction, T, is the characteristic time of thermal relaxation 

related to the "lateral" heat transfer, and y-r is the ratio of the specific chemical heat 
value to the initial heating heat content at the point of maximum temperature. 

The basic aim of the approximate asymptotic solution of problem (1.3) is the determina- 

tion of the critical value of 6 which separates two modes by investigating the initial stage 

of the process. When 6>6* ignition takes place, while for O< 6( 6* we have extinction. 
We shall derive a solution for p >I typical for the majority of gases producing exothermic 
reactions. Unless otherwise stated,we assume that 

L, s, r, a, Y> aF/ae=o(I) 

2, Solution of the problem. We seek a solution of the form 
8 (X,t) = si(X,t) + u (X, t, B) (2.1) 

where e1 is the solution of the problem which defines the heating of gas as that of a chemic- 

ally inert body 
859, I at = aWi I ax2 - a@* 

(2.2) 
8, (X,0) = cf, (X), CD (0) = 1, d@(O)/ ax = 0 

d2Q,tax=<o 

whose solution is of the form 
m 

@i(Xst)=L S @((rl)exp(-_)dq 
2)/n: 

-m 

@i(O, 0) = 1 

(2.3) 

The most favorable conditions for ignition are, obviously, near the point of the highest 
initial temperature. The temperature at that point varies in conformity with the law 

m 

@(O, t)= ,-at 1 Q (9) =P (-$)dq, 
2VZf __ 

@,(O, 0)= 1 (2.4) 

Note that when the heat energy balance determined by the relation between heat dissipa- 

tion and its generation by the chemical reaction in the neighborhood of point X = 0 becomes 

negative at instants of time close the initial, ignition becomes impossible. 
Thus for the determination of critical conditions of ignition it is sufficient to analyze 

the evolution of the temperature initial perturbation in the close vicinity of the maximum 

temperature point. It follows from (2.3) that the temperature distribution during the short 
time of passive heating-up near that point is defined by 

@(X, t)=l+ ~cw[~ft]-at+O(X~, t) (2.5) 

For analyzing temperature variation due to chemical heating-up we separate the region of 

variation of variables X and t in which the chemical heating-up is substantial (the inner 

region) and the region where the chemical heating-up can be neglected (the external region). 
We introduce in the inner region new variables 'c = t@ and g z X1/B, and seek for U and 

y a solution of the form 

U(X, t, B) = p-1 u, (E, 7) + VU2 (E. 4 + 0 (B-7 (2.6) 

y (X, 1, B) = y, (E, 4 + p-?/1 (5, 4 + 0 (V) 
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We assume that 

(2.7) 

Formula (2.7) implies that generally the order of 6 relative to fi can vary. Substituting (2.6) 

and (2.7) into (1.3) and taking into account (2.5), for the principal terms of expansion (2.6) 

we obtain 

(2.8) 

It follows from (2.8) that for 6 close to 6* the second term in the right-hand side of the 

equation must be of the same order in p-1 as the others, i.e. fo (Iv = 1. Then from (2.9) and 

(2.10) we have y,,ssO. 

Thus in the initial stage of the process the temperature rise of chemical heating-up is 

substantial for a negligibly small burn-up of the reagent. Depending on 6, Eq. (2.8) must 

determine different types of behavior of function U,(T, E): a monotonically increasing one 

corresponding to ignition, the other nonmonotonic has a section of growth followed by a drop 

that corresponds to extinction. The conditions of merging of the internal solution with the 

external is automatically satisfied as E-00, hence there is no necessity to examine these. 

The determination of 6* generally requires the numerical solution of problem (2.8). 

3, Particular cases I Let us consider particular cases taking Lnto account 

y, = 0. We represent Eq. (2.8) as 

u, (E, 0) = 0, u,, (0, T) = 0. u, (co, T) = 0 

and consider the case when a=+ 0 and d*Q (O)/ dX2 = 0, i.e. when functions @ with X 

of the form 0 = 1 - O(Xn), where n#Z. 

Since the initial conditions are independent of E when z>o, we have 

Ur(S, z) = U, (Z), BU, / aT = 6, exp (U, - az), U, (0) := 0 

from which 

that 

(3.1) 

0 are 

(3.2) 

(3.3) 

Solution (3.3) depends on the quantity 6/a: for 0 <6/a (1 it increases from U,(O) to 

its maximum value 
lr, (C-z) =: --In [I - is / c] > 0 

as t-+cu. 

When 6/u = 1 the solution is of the form C, =: ~7, and as Z+ zu it approaches infinity. 

For 6 i a> 1 the solution is of the explosion type, and for -C = --'/,ln(l- a/ 6) the tempera- 

ture U, (7) = w. Hence 6* = a. In dimensional form 

8 kQp;-‘exp (- R 1 RT,) 

(1 u'(T, -T_) 

i.e. in the case of @" (0) = d2@(0)idX2 = 0 with a +O and 6/a> 1 ignition takes place, and 

for 6 /a (1 extinction. It should be pointed out that in this case the initial size of the 
elevated temperature zone is immaterial. 

In order to reduce the number of independent parameters it is convenient to introduce in 
the case of Q"(O)# 0 new parameters 

1, -:= E (I Q" (0) I)'/%, p = 7 1 CD” (0) 1 

b 1 &I, 1 0” (0) (-I, a ; cx 1 W (0) /-’ 

with which Eq. (3.1) assumes the form 

aU, I ap = CPU, I a$ + b exp (U, - (a + 1)p - q* I 2) (3.4) 

Ii, (I), p = 0) = 0, U,q (0, p) = 0, U, (123, P) = 0 

Because of the presence of the term -?)"/2 in the exponent in (3.4) which implies a rapid 
decrease of the heat emission function, it is possible to consider in the approximate analysis 
instead of (3.4) the equation 

au i dp y b, exp (U - (U + l)p), u (p = 0) 0 (3.5) 
Note that the critical value b,* which corresponds to Eq. (3;5) is lower than b* which 
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corresponds to Eq. (3.4). This is due to the presence in (3.4) of the diffusion term $2u1/8nz 
which represent heat transfer from the zone of increased temperature. The approximate equa- 
tion (3.5) yields however a correct qualitative picture of the process. 

From (3.5) we obtain 
v = --In I(&, / (a + 1)) (e-(a+l)P - 1) + 11 (3.6) 

which yields the critical value of bp* as b,* = a + 1, the cases of bo <a +i and b,> a +1 
correspond, respectively, to extinction and ignition. In dimensional form the condition of 

ignition is 
kQpt-:-'exp f- E'IRT,) ~~ 

(T*-- T_.)@ t @%p&Z) .. 

The curve of b,* = b,*(a) is shown in Fig.1 by the dash line. 
Equation (3.4) was also solved numerically for the initial temperature distribution 

O(X) = exp(-X2/ 2). It is represented in Fig.1 in the form of function b (a). The values 
of parameters in the region above that curve correspond to ignition, those below it to extinc- 
tion. Calculations had shown that in the absence of heat transfer a = 6 the critical value is 

4 

Fig.1 Fig.2 

b* = 1.7, while the critical value calculated by formula (3.61 yields b,’ = 1. This shows 
that even a rough investigation provides correct qualitative conclusions. 

Curves l-4 in Fig.2 show the dependence of chemical heating-up maximum temperature U, 
(0, z) on tdm@ for fixed b = 2.5 and a = 0.8, 0.65, 0.675, 6.6. The qualitative change of the 
shape of curves occurs for a = 0.6. 

To check the exactness of asymptotic methods, the complete problem (1.3) was solved num- 
erically for @=exp{-X*/2) and OL = 0, The results of calculations are shown in Fig.3. The 
complete temperature field pattern appears in Fig,3a, where the heavy solid line is the charac- 
teristic of the initial high temperature cone. The solid lines 1 and 2 show the temperature 
variation with time in the case of ignition for 6=i.55, fl= 10,and t* < tZ . The dash lines de- 
fine the space-time temperature distribution in the case of extinction for 6 =I.21 and g= 10 
at the same instants of time t,<t,. 

The dependence of 6* on p is shown in Fig.3,b; ignition 
a b occurs for parameters lying above the curve. Since the prec- 

3 ision of asymptotic methods increases as @-co* it is reas- 
onable to compare the asymptotic and numerical solutions for 

~-co. For D = 0 from tile approximate problem (3.1) we 
1. u have b* = 1.1. Computations by (1.3) and Fig. 3,b show that 

for a=0 and fl=50, we have 6* = 1,71, i.e. a good agree- 
ment of results. Although Eq. (3.1) is not always solvable 
analytically, it makes possible the examination of interest- 
ing particular cases that correspond to various dL@ / dX2 
and (r, and to obtain qualitative characteristics of a proc- 
ess. 
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